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LE’ITER TO THE EDITOR 

Supersymmetry, factorisation of the Schrodinger equation and 
a Hamiltonian hierarchy 

C V Sukumar 
Hahn-Meitner Institut fur Kemforschung, Postfach 39-01-28, DlOOO Berlin 39, West 
Germany 

Received 25 October 1984 

Abstract. We present a systematic procedure for constructing a hierarchy of non-relativistic 
Hamiltonians with the property that the adjacent members of the hierarchy are ‘supersym- 
metric partners’ i.e. they share the same eigenvalue spectrum except for the ‘missing’ ground 
state and the eigenvectors are simply related. 

Consider a Hermitian positive semi-definite operator of the form H = A’A- in which 
A’ is the Hermitian adjoint of the operator A-. Let VI be an eigenfunction of H with 
eigenvalue E. The eigenvalue equation 

A+A-Y = E VI (1) 

A-A’(A-Y) = E(A-VI). (2) 

leads, on multiplication from the left by A-, to 

Equations ( 1 )  and (2) lead to the following theorem. 

Theorem 1. An eigenvalue of the operator A+A- is also an eigenvalue of the operator 
A-A+, except when A-Y = 0. The normalised eigenfunctions of AfA- and A-A+, 
denoted by Y and Q respectively, are connected by the equations 

Q. (3) Q = E - 1 / 2  A-VI, 9 = ~ - 1 / 2 ~ +  

Bernstein and Brown (1984) considered a Hamiltonian of the form H, = A+A- 
with A’= ( T d / d x + f a U / d x )  for a specified function V ( x ) .  They showed that the 
scalar Hamiltonian H+ and its ‘partner’ H- = A-A+, corresponding to the potentials 
V, = (fa U / a x ) ’  *4a2 U / a x 2 ,  can be viewed as the ‘bosonic’ and the ‘fermionic’ com- 
ponents of a supersymmetric Hamiltonian 

%‘= [( - a2/ax2+ w 2 ) 1  + ~ , a  w / a x ]  (4) 

in which W =  - t a v / a x ,  I is the unit matrix and c3 is the Pauli spin matrix (Witten 
1981). Since H+ has a ground state with eigenvalue E = O  and an eigenfunction that 
satisfies A-VI = 0, theorem 1 implies the following mapping of the eigenvalues of H- 
and H,: 

n=0,1,2 ,.... ( 5 )  E?)  = E!“+] )  
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Bernstein and Brown (1984) were thus able to infer the energy of the first excited state 
of H+ by calculating the ground state energy of H - .  

In this letter we consider the non-relativistic Hamiltonian H = - i a 2 / a x 2 +  V ( x )  for 
any potential V ( x )  that can support at least one bound state. We factorise H in the form 

H=-' 2 d  / a x 2 +  V ( x )  = A'A-+ E 

where 
A'=(l /&)(*d/dx+ P ( x ) ) .  

The unknown function P ( x )  and the undetermined constant E are then determined 
by the consistency condition that 

f2+ d v / a x  = 2( v - E ). (8) 

This condition is clearly satisfied if 

?= ( l /~ ' ' ) ) (dY' ' ' /dx)  and E = E(') (9) 

where *('' and E(') are the ground state eigenfunction and eigenvalue of H. The 
choice of the wavefunction in equation (9) is motivated by the consideration that A+A- 
is required to be a positive semi-definite operator with eigenvalues 20. This leads to 
the following theorem. 

Theorem 2. Any Hamiltonian of the form H = - - $ d 2 / a X 2 +  V ( x ) ,  which has a ground 
state E"') can be factorised as H = A+A-+  E") with A* = 
( l /&)[*:a /ax+ ( l / Y ( " ) ( d * ( " / d X ) ] .  

We now show that theorems 1 and 2 enable the generation of a hierarchy of 
Hamiltonians with simple relations connecting the eigenvalues and eigenfunctions of 
the different members of the hierarchy. Starting from a Hamiltonian HI for a potential 
V l ( x )  that can support M bound states with a ground state (q','), E','') and applying 
theorem 2 we get 

HI = - $ d 2 / d x 2 +  V ~ ( X ) =  A:A;+E$" (10) 
A: = ( l / h ) [ * d / d x  + ( l/*\'')(d*~)/dx)]. (11) 

H2=A;A:+E',')= - f d 2 / d x 2 +  V2(x)  ( 1 2 )  

V 2 ( x ) =  V 1 ( x ) + [ A ; ,  A:]=  V , ( ~ ) - - ( d ~ / a x ~ ) l n * $ ~ ) .  (13) 

We can now construct a 'supersymmetric partner' H2 with potential V2(x)  given by 

Since A;Y\"=O, theorem 1 then shows that the spectra of HI and H2 satisfy the 
condition that 

n = 0 ,  1 , 2 , .  .., M - 2  (14) 

(15) 
By applying theorem 2 to the new Hamiltonian H2 we can refactorise H2 in terms of 
its ground state (*io), El") as 

El") = E{n+l) 

and the normalised eigenfunctions of HI and H2 are connected by the equation 
TY) = [E',"+I) - E\0)]-1/2A-*(n+l) 

1 1 '  
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This new factorisation of H2 in turn leads to a new 'supersymmetric partner' H3 given 

(18) 

by 
H3 = A;A: + E:" 

whose spectrum can be determined by the application of theorem 1. 

Hamiltonians given by 
By repeated application of theorems 1 and 2 we can thus generate a hierarchy of 

H,,= -fa2/ax2+ V,,(X)= A:A,+EE',O'=A,-IA:-I+E',ql, (19) 

A: = (I/&?)( *a/ax+( l /Y\I") (a*~' ," ' /ax) ]  (20) 

v,,(x) = V, , -~ (X)  - (a2/ax2) In 

n =2 ,3 , .  . . , M 

= v,(x) - (a2/ax2) In (Y!')*$'). . . *Lo21), 
(21) 

whose spectra satisfy the Conditions 

in which A i p l  is the annihilation operator of the ground state in the potential Vn- l ( x ) .  
We have outlined a simple procedure for constructing a hierarchy of Hamiltonians 

with the property that the Nth member of the hierarchy has the same eigenvalue 
spectrum as the first member H I  except for missing the first ( N  - 1)  eigenvalues of 
H1. In particular, the Nth excited state of HI is degenerate with the ground state of 
HNtl and the corresponding wavefunctions are simply related. We give some examples 
of this hierarchy. 

Harmonic oscillator 

The potential VI  = i o2x2  with the ground state wavefunction 
hierarchy 

- leads to the 

V n ( x ) =  V,(x )+(n-1 )o .  (24) 

The Hamiltonian hierarchy corresponds to shifting the entire potential well up in 
energy in units of hw ( h =  1 in the units we have adopted). 

Particle in a box 

The potential 

VI = 0 IxI<a 

VI =CO 1x1 = a 

with the eigenvalue spectrum 

E\" = ( r2/8a2)(  m + l)', m =0, 1,2, .  . . 
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has the ground state 9:') -cos( 7rx/2a) and leads to 

Vn(x) = V,(x)+(.rr2/8a2)n(n - 1)  sec2 (vx/2a)  

m=0,1 ,2 ,  . . .  
n = l , 2 , 3  ,... . 

E',") =2 E\"+m-l)  - - ( r2/8a2)(  n + m ) 2 ,  

Thus the potential for a particle in a box generates a series of sec2( rx /2a )  potentials 
with increasing strengths. Indeed the spectrum of sec2x potential is calculated in Morse 
and Feshbach (1953) to be of the form J 2 ,  the starting value of the integer J being 
determined by the strength of the potential. 

We now consider examples of Hamiltonians with both discrete and continuous 
states. 

Hydrogen atom 

The s-wave radial equation corresponds to the potential VI( r) = -b/ r with the spectrum 

E\'"'= -b2/2(m+ 1)2 m = 0 ,  1,2 ,.... (29) 

v2(r)  = V, + 1/r2. (30) 

The ground state wavefunction VI io) - re-br leads to 

V2 thus corresponds to the potential for the p-wave radial equation with the ground 
state VI?)- r2e-br'2 and the spectrum 

E$"'= -b2/2(m+2)2, m = 0 , 1 , 2  ,.... (31) 

The potential V,(r) can be shown to be given by 

Vn(r) = - (b / r )  + n(n - 1)/2r2, n = 1,2, . . . 
with the spectrum 

m = 0 , 1 , 2  ,.... (33) E") = -b2/2(n + m)', 

The Hamiltonian hierarchy now corresponds to the addition of the centrifugal potential. 
Through equation (22) we recover the well known property that the Ns state of an 
attractive Coulomb potential is degenerate with the Np, Nd.  . . states. 

Morse potential 

The potential 

V,(x) = D,  exp [2(x, -x)/d]-2D1 exp [(x, -x) /d]  (34) 
which supports a finite number M of bound states has the spectrum (Morse and 
Feshbach 1953) 

m = 0, 1, . . . , M - 1 (35) E(m) , = -a :/ 2d2 + ( m + t )  a I /  d 2  - 2d-2( m + t )2 ,  
in which a, = d h D  and M is the largest integer less than (a, +i). The ground state 
wavefunction 
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V 2 ( x )  corresponds to a new Morse potential with the parameters a2 = ( a l  - 11, x2 = 
x l + d  In ( a I / a I  - 1) and the spectrum 

m = 0 , 1 , 2  ,..., M - 2 .  (38) E:") = E ( m + l )  
1 

An invariance property of the spectrum of the Morse potential is now apparent since 
the substitution a2= a1 - 1 indeed leads to the equality E(lm)(a2)  = E( lm+l ) (a l ) .  The 
(M + 1) member Hamiltonian hierarchy thus corresponds to a set of Morse potentials 
with differing a's, aN = aI - ( N  - 1)  and differing minima xN. The Mth member of 
the hierarchy supports a single bound state and the condition M < ( a I  +;) then leads 
to a Vntl that is a Morse potential which is not deep enough to support a bound state. 

We have illustrated the Hamiltonian hierarchy in equation (19) with some analyti- 
cally soluble examples. Clearly the procedure outlined in this letter is very general. 
We will show in a subsequent detailed publication a generalisation of this approach 
to Hamiltonian functions of an arbitrary number of variables. The Gelfand-Levitan 
equations in inverse scattering theory also produce families of potentials which differ 
by the presence of additional bound states (Abraham and Moses 1980, Nieto 1984). 
The connection of the approach adopted in this letter to the Gelfand-Levitan equations 
will be discussed in a future publication. 

I thank D M Brink, B Buck, M A Nagarajan and R Baldock for useful discussions. 

Note added in proof: Since this letter was submitted for publication we have become aware of the publication 
of A A Andrianov, N V Borisov and M V Ioffe in Phys. Lett. lO5A 19-22. 

References 

Abraham P B and Moses H E 1980 Phys. Rev. A 22 1333-40 
Bernstein M and Brown L S 1984 B y s .  Rev. Lett. 52 1933-5 
Morse P and Feshbach H 1953 Methods of 7heoretical Physics (New York: McGraw Hill) vol 1, p768, vol 

Nieto M M 1984 Phys. Lett. 145B 208-10 
Witten E 1981 Nucl. Phys. B 188 513-54 

2, p 1672 


